Arbeitspapier

Leave-k-out diagnostics in state space models

The paper derives an algorithm for computing leave-k-out diagnostics for the detection of patches of outliers for stationary and non-stationary state space models with regression effects. The algorithm is based on a reverse run of the Kalman filter on the smoothing errors and is both efficient and easy to implement. An illustration concerning the US index of industrial production for Textiles proves the effectiveness of multiple deletion diagnostics in unmasking clusters of outlying observations.

Language
Englisch

Bibliographic citation
Series: SFB 373 Discussion Paper ; No. 2000,74

Classification
Wirtschaft
Subject
Kalman filter and smoother
influence
outliers
structural time series models

Event
Geistige Schöpfung
(who)
Proietti, Tommaso
Event
Veröffentlichung
(who)
Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
(where)
Berlin
(when)
2000

Handle
URN
urn:nbn:de:kobv:11-10048008
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Proietti, Tommaso
  • Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes

Time of origin

  • 2000

Other Objects (12)