Arbeitspapier
The bootstrap and the edgeworth correction for semiparametric averaged derivatives
In a number of semiparametric models, smoothing seems necessary in order to obtain estimates of the parametric component which are asymptotically normal and converge at parametric rate. However, smoothing can inflate the error in the normal approximation, so that refined approximations are of interest, especially in sample sizes that are not enormous. We show that a bootstrap distribution achieves a valid Edgeworth correction in case of density-weighted averaged derivative estimates of semiparametric index models. Approaches to bias-reduction are discussed. We also develop a higher order expansion, to show that the bootstrap achieves a further reduction in size distortion in case of two-sided testing. The finite sample performance of the methods is investigated by means of Monte Carlo simulations froma Tobit model.
- Language
-
Englisch
- Bibliographic citation
-
Series: cemmap working paper ; No. CWP12/04
- Classification
-
Wirtschaft
Single Equation Models; Single Variables: Panel Data Models; Spatio-temporal Models
- Subject
-
Bootstrap , Edgeworth correction , Semiparametric averaged derivatives
Nichtparametrisches Verfahren
Theorie
Bootstrap-Verfahren
Fehlerkorrekturmodell
- Event
-
Geistige Schöpfung
- (who)
-
Nishiyama, Yoshihiko
Robinson, Peter M.
- Event
-
Veröffentlichung
- (who)
-
Centre for Microdata Methods and Practice (cemmap)
- (where)
-
London
- (when)
-
2004
- DOI
-
doi:10.1920/wp.cem.2004.1204
- Handle
- Last update
-
10.03.2025, 11:42 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Nishiyama, Yoshihiko
- Robinson, Peter M.
- Centre for Microdata Methods and Practice (cemmap)
Time of origin
- 2004