Methane, ethane, and propane production in Greenland ice core samples and a first isotopic characterization of excess methane

Abstract 4) to short-lived trace gases like ethane (C2 H6) and propane (C3 H8). Recently, the comparison of CH4 records obtained using different extraction methods revealed disagreements in the CH4 concentration for the last glacial in Greenland ice. Elevated methane levels were detected in dust-rich ice core sections measured discretely, pointing to a process sensitive to the melt extraction technique. To shed light on the underlying mechanism, we performed targeted experiments and analyzed samples for methane and the short-chain alkanes ethane and propane covering the time interval from 12 to 42 kyr. Here, we report our findings of these elevated alkane concentrations, which scale linearly with the amount of mineral dust within the ice samples. The alkane production happens during the melt extraction step of the classic wet-extraction technique and reaches 14 to 91 ppb of CH4 excess in dusty ice samples. We document for the first time a co-production of excess methane, ethane, and propane, with the observed concentrations for ethane and propane exceeding their past atmospheric background at least by a factor of 10. Independent of the produced amounts, excess alkanes were produced in a fixed molar ratio of approximately 14: 2: 1, indicating a shared origin. The measured carbon isotopic signature of excess methane is (- 47.0 ± 2.9) ‰ and its deuterium isotopic signature is (- 326 ± 57) ‰. With the co-production ratios of excess alkanes and the isotopic composition of excess methane we established a fingerprint that allows us to constrain potential formation processes. This fingerprint is not in line with a microbial origin. Moreover, an adsorption–desorption process of thermogenic gas on dust particles transported to Greenland does not appear very likely. Instead, the alkane pattern appears to be indicative of abiotic decomposition of organic matter as found in soils and plant leaves.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Methane, ethane, and propane production in Greenland ice core samples and a first isotopic characterization of excess methane ; volume:19 ; number:5 ; year:2023 ; pages:999-1025 ; extent:27
Climate of the past ; 19, Heft 5 (2023), 999-1025 (gesamt 27)

Creator
Mühl, Michaela
Schmitt, Jochen
Seth, Barbara
Lee, James E.
Edwards, Jon S.
Brook, Edward J.
Blunier, Thomas
Fischer, Hubertus

DOI
10.5194/cp-19-999-2023
URN
urn:nbn:de:101:1-2023052504275257717287
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 11:01 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Mühl, Michaela
  • Schmitt, Jochen
  • Seth, Barbara
  • Lee, James E.
  • Edwards, Jon S.
  • Brook, Edward J.
  • Blunier, Thomas
  • Fischer, Hubertus

Other Objects (12)