On the pitfalls of Gaussian likelihood scoring for causal discovery
Abstract: We consider likelihood score-based methods for causal discovery in structural causal models. In particular, we focus on Gaussian scoring and analyze the effect of model misspecification in terms of non-Gaussian error distribution. We present a surprising negative result for Gaussian likelihood scoring in combination with nonparametric regression methods.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
On the pitfalls of Gaussian likelihood scoring for causal discovery ; volume:11 ; number:1 ; year:2023 ; extent:11
Journal of causal inference ; 11, Heft 1 (2023) (gesamt 11)
- Creator
-
Schultheiss, Christoph
Bühlmann, Peter
- DOI
-
10.1515/jci-2022-0068
- URN
-
urn:nbn:de:101:1-2023051114300067671801
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
14.08.2025, 11:01 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Schultheiss, Christoph
- Bühlmann, Peter