On the pitfalls of Gaussian likelihood scoring for causal discovery

Abstract: We consider likelihood score-based methods for causal discovery in structural causal models. In particular, we focus on Gaussian scoring and analyze the effect of model misspecification in terms of non-Gaussian error distribution. We present a surprising negative result for Gaussian likelihood scoring in combination with nonparametric regression methods.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
On the pitfalls of Gaussian likelihood scoring for causal discovery ; volume:11 ; number:1 ; year:2023 ; extent:11
Journal of causal inference ; 11, Heft 1 (2023) (gesamt 11)

Creator
Schultheiss, Christoph
Bühlmann, Peter

DOI
10.1515/jci-2022-0068
URN
urn:nbn:de:101:1-2023051114300067671801
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 11:01 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Schultheiss, Christoph
  • Bühlmann, Peter

Other Objects (12)