Arbeitspapier

Sensitivity of risk measures with respect to the normal approximation of total claim distributions

A simple and commonly used method to approximate the total claim distribution of a (possible weakly dependent) insurance collective is the normal approximation. In this article, we investigate the error made when the normal approximation is plugged in a fairly general distribution-invariant risk measure. We focus on the rate of the convergence of the error relative to the number of clients, we specify the relative error's asymptotic distribution, and we illustrate our results by means of a numerical example. Regarding the risk measure, we take into account distortion risk measures as well as distribution-invariant coherent risk measures.

Language
Englisch

Bibliographic citation
Series: SFB 649 Discussion Paper ; No. 2010,033

Classification
Wirtschaft
Insurance; Insurance Companies; Actuarial Studies
Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
Subject
total claim distribution
[phi]- and [alpha]-mixing sequences of random variables
normal approximation
nonuniform Berry-Esseen inequality
distortion risk measure
coherent risk measure
robust representation
Risiko
Messung
Versicherungstechnisches Risiko
Statistische Verteilung
Statistischer Fehler
Robustes Verfahren
Theorie

Event
Geistige Schöpfung
(who)
Krätschmer, Volker
Zähle, Henryk
Event
Veröffentlichung
(who)
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
(where)
Berlin
(when)
2010

Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Krätschmer, Volker
  • Zähle, Henryk
  • Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk

Time of origin

  • 2010

Other Objects (12)