Arbeitspapier

Is spatial bootstrapping a panacea for valid inference?

Bootstrapping methods have so far been rarely used to evaluate spatial data sets. Based on an extensive Monte Carlo study we find that also for spatial, cross-sectional data, the wild bootstrap test proposed by Davidson and Flachaire (2008) based on restricted residuals clearly outperforms asymptotic as well as competing bootstrap tests, like the pairs bootstrap.

Language
Englisch

Bibliographic citation
Series: Volkswirtschaftliche Diskussionsreihe ; No. 322

Classification
Wirtschaft
Methodological Issues: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Regional Economic Activity: Growth, Development, Environmental Issues, and Changes
Subject
Spatial econometrics
Paired bootstrap
Wild bootstrap
Parameter inference

Event
Geistige Schöpfung
(who)
Klarl, Torben
Event
Veröffentlichung
(who)
Universität Augsburg, Institut für Volkswirtschaftslehre
(where)
Augsburg
(when)
2013

Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Klarl, Torben
  • Universität Augsburg, Institut für Volkswirtschaftslehre

Time of origin

  • 2013

Other Objects (12)