Arbeitspapier

Challenging traditional risk models by a non-stationary approach with nonparametric heteroscedasticity

In this paper we analyze an econometric model for non-stationary asset returns. Volatility dynamics are modelled by nonparametric regression; consistency and asymptotic normality of a symmetric and of a one-sided kernel estimator are outlined with remarks on the bandwidth decision. Further attention is paid to asymmetry and heavy tails of the return distribution, involved by the framework for innovations. We survey the practicability and automatization of the implementation. For simulated price processes and a multitude of financial time series we observe a satisfying model approximation and good short-term forecasting abilities of the univariate approach. The non-stationary regression model outperforms parametric risk models and famous ARCH-type implementations.

Language
Englisch

Bibliographic citation
Series: Working Paper Series ; No. IF41V1

Classification
Wirtschaft
Semiparametric and Nonparametric Methods: General
Subject
heteroscedastic asset returns
non-stationarity
nonparametric regression
volatility
innovation modelling
forecasting
Value at Risk (VaR)
ARCH-models

Event
Geistige Schöpfung
(who)
Gürtler, Marc
Rauh, Ronald
Event
Veröffentlichung
(who)
Technische Universität Braunschweig, Institut für Finanzwirtschaft
(where)
Braunschweig
(when)
2012

Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Gürtler, Marc
  • Rauh, Ronald
  • Technische Universität Braunschweig, Institut für Finanzwirtschaft

Time of origin

  • 2012

Other Objects (12)