Quantum Machine Learning Implementations: Proposals and Experiments

Abstract: This article gives an overview and a perspective of recent theoretical proposals and their experimental implementations in the field of quantum machine learning. Without an aim to being exhaustive, the article reviews specific high‐impact topics such as quantum reinforcement learning, quantum autoencoders, and quantum memristors, and their experimental realizations in the platforms of quantum photonics and superconducting circuits. The field of quantum machine learning can be among the first quantum technologies producing results that are beneficial for industry and, in turn, to society. Therefore, it is necessary to push forward initial quantum implementations of this technology, in noisy intermediate‐scale quantum computers, aiming for achieving fruitful calculations in machine learning that are better than with any other current or future computing paradigm.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Quantum Machine Learning Implementations: Proposals and Experiments ; day:02 ; month:05 ; year:2023 ; extent:7
Advanced quantum technologies ; (02.05.2023) (gesamt 7)

Urheber
Lamata, Lucas

DOI
10.1002/qute.202300059
URN
urn:nbn:de:101:1-2023050315051333642849
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:59 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Lamata, Lucas

Ähnliche Objekte (12)