Arbeitspapier
Generalized exogenous processes in DSGE: A Bayesian approach
The Reversible Jump Markov Chain Monte Carlo (RJMCMC) method can enhance Bayesian DSGE estimation by sampling from a posterior distribution spanning potentially nonnested models with parameter spaces of different dimensionality. We use the method to jointly sample from an ARMA process of unknown order along with the associated parameters. We apply the method to the technology process in a canonical neoclassical growth model using post war US GDP data and find that the posterior decisively rejects the standard AR(1) assumption in favor of higher order processes. While the posterior contains significant uncertainty regarding the exact order, it concentrates posterior density on hump-shaped impulse responses. A negative response of hours to a positive technology shock is within the posterior credible set when noninvertible MA representations are admitted.
- Language
-
Englisch
- Bibliographic citation
-
Series: SFB 649 Discussion Paper ; No. 2015-014
- Classification
-
Wirtschaft
Bayesian Analysis: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Model Construction and Estimation
Model Evaluation, Validation, and Selection
- Subject
-
Bayesian analysis
Dynamic stochastic general equilibrium model
Model evaluation
ARMA
Reversible Jump Markov Chain Monte Carlo
- Event
-
Geistige Schöpfung
- (who)
-
Meyer-Gohde, Alexander
Neuhoff, Daniel
- Event
-
Veröffentlichung
- (who)
-
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
- (where)
-
Berlin
- (when)
-
2015
- Handle
- Last update
- 10.03.2025, 11:44 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Meyer-Gohde, Alexander
- Neuhoff, Daniel
- Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
Time of origin
- 2015