Arbeitspapier

Generalized exogenous processes in DSGE: A Bayesian approach

The Reversible Jump Markov Chain Monte Carlo (RJMCMC) method can enhance Bayesian DSGE estimation by sampling from a posterior distribution spanning potentially nonnested models with parameter spaces of different dimensionality. We use the method to jointly sample from an ARMA process of unknown order along with the associated parameters. We apply the method to the technology process in a canonical neoclassical growth model using post war US GDP data and find that the posterior decisively rejects the standard AR(1) assumption in favor of higher order processes. While the posterior contains significant uncertainty regarding the exact order, it concentrates posterior density on hump-shaped impulse responses. A negative response of hours to a positive technology shock is within the posterior credible set when noninvertible MA representations are admitted.

Language
Englisch

Bibliographic citation
Series: SFB 649 Discussion Paper ; No. 2015-014

Classification
Wirtschaft
Bayesian Analysis: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Model Construction and Estimation
Model Evaluation, Validation, and Selection
Subject
Bayesian analysis
Dynamic stochastic general equilibrium model
Model evaluation
ARMA
Reversible Jump Markov Chain Monte Carlo

Event
Geistige Schöpfung
(who)
Meyer-Gohde, Alexander
Neuhoff, Daniel
Event
Veröffentlichung
(who)
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
(where)
Berlin
(when)
2015

Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Meyer-Gohde, Alexander
  • Neuhoff, Daniel
  • Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk

Time of origin

  • 2015

Other Objects (12)