Abel-Gontcharoff polynomials, parking trajectories and ruin probabilities
Abstract: The central mathematical tool discussed is a non-standard family of polynomials, univariate and bivariate, called Abel-Goncharoff polynomials. First, we briefly summarize the main properties of this family of polynomials obtained in the previous work. Then, we extend the remarkable links existing between these polynomials and the parking functions which are a classic object in combinatorics and computer science. Finally, we use the polynomials to determine the non-ruin probabilities over a finite horizon for a bivariate risk process, in discrete and continuous time, assuming that claim amounts are dependent via a partial Schur-constancy property.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Abel-Gontcharoff polynomials, parking trajectories and ruin probabilities ; volume:11 ; number:1 ; year:2023 ; extent:17
Dependence modeling ; 11, Heft 1 (2023) (gesamt 17)
- Urheber
-
Lefèvre, Claude
Picard, Philippe
- DOI
-
10.1515/demo-2023-0107
- URN
-
urn:nbn:de:101:1-2023113013044678689763
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
15.08.2025, 07:22 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Lefèvre, Claude
- Picard, Philippe