Abel-Gontcharoff polynomials, parking trajectories and ruin probabilities

Abstract: The central mathematical tool discussed is a non-standard family of polynomials, univariate and bivariate, called Abel-Goncharoff polynomials. First, we briefly summarize the main properties of this family of polynomials obtained in the previous work. Then, we extend the remarkable links existing between these polynomials and the parking functions which are a classic object in combinatorics and computer science. Finally, we use the polynomials to determine the non-ruin probabilities over a finite horizon for a bivariate risk process, in discrete and continuous time, assuming that claim amounts are dependent via a partial Schur-constancy property.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Abel-Gontcharoff polynomials, parking trajectories and ruin probabilities ; volume:11 ; number:1 ; year:2023 ; extent:17
Dependence modeling ; 11, Heft 1 (2023) (gesamt 17)

Urheber
Lefèvre, Claude
Picard, Philippe

DOI
10.1515/demo-2023-0107
URN
urn:nbn:de:101:1-2023113013044678689763
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:22 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Lefèvre, Claude
  • Picard, Philippe

Ähnliche Objekte (12)