Exponential inequalities for nonstationary Markov chains

Abstract: Exponential inequalities are main tools in machine learning theory. To prove exponential inequalities for non i.i.d random variables allows to extend many learning techniques to these variables. Indeed, much work has been done both on inequalities and learning theory for time series, in the past 15 years. However, for the non independent case, almost all the results concern stationary time series. This excludes many important applications: for example any series with a periodic behaviour is nonstationary. In this paper, we extend the basic tools of [19] to nonstationary Markov chains. As an application, we provide a Bernsteintype inequality, and we deduce risk bounds for the prediction of periodic autoregressive processes with an unknown period.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Exponential inequalities for nonstationary Markov chains ; volume:7 ; number:1 ; year:2019 ; pages:150-168 ; extent:19
Dependence modeling ; 7, Heft 1 (2019), 150-168 (gesamt 19)

Urheber
Alquier, Pierre
Doukhan, Paul
Fan, Xiequan

DOI
10.1515/demo-2019-0007
URN
urn:nbn:de:101:1-2411181533370.904619024762
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:22 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Alquier, Pierre
  • Doukhan, Paul
  • Fan, Xiequan

Ähnliche Objekte (12)