Artikel

Bayesian model averaging with the integrated nested laplace approximation

The integrated nested Laplace approximation (INLA) for Bayesian inference is an efficient approach to estimate the posterior marginal distributions of the parameters and latent effects of Bayesian hierarchical models that can be expressed as latent Gaussian Markov random fields (GMRF). The representation as a GMRF allows the associated software R-INLA to estimate the posterior marginals in a fraction of the time as typical Markov chain Monte Carlo algorithms. INLA can be extended by means of Bayesian model averaging (BMA) to increase the number of models that it can fit to conditional latent GMRF. In this paper, we review the use of BMA with INLA and propose a new example on spatial econometrics models.

Language
Englisch

Bibliographic citation
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 8 ; Year: 2020 ; Issue: 2 ; Pages: 1-15 ; Basel: MDPI

Classification
Wirtschaft
Subject
Bayesian model averaging
INLA
spatial econometrics

Event
Geistige Schöpfung
(who)
Gómez-Rubio, Virgilio
Bivand, Roger
Rue, Håvard
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2020

DOI
doi:10.3390/econometrics8020023
Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Gómez-Rubio, Virgilio
  • Bivand, Roger
  • Rue, Håvard
  • MDPI

Time of origin

  • 2020

Other Objects (12)