Arbeitspapier
A unifying framework for submodular mean field games
We provide an abstract framework for submodular mean field games and identify verifiable sufficient conditions that allow to prove existence and approximation of strong mean field equilibria in models where data may not be continuous with respect to the measure parameter and common noise is allowed. The setting is general enough to encompass qualitatively different problems, such as mean field games for discrete time finite space Markov chains, singularly controlled and reflected diffusions, and mean field games of optimal timing. Our analysis hinges on Tarski's fixed point theorem, along with technical results on lattices of flows of probability and sub-probability measures.
- Language
-
Englisch
- Bibliographic citation
-
Series: Center for Mathematical Economics Working Papers ; No. 661
- Classification
-
Wirtschaft
- Subject
-
Mean field games
submodularity
complete lattice of measures
Tarski's fixedpoint theorem
Markov chain
singular stochastic control
reflected diffusion
optimal stopping
- Event
-
Geistige Schöpfung
- (who)
-
Dianetti, Jodi
Ferrari, Giorgio
Fischer, Markus
Nendel, Max
- Event
-
Veröffentlichung
- (who)
-
Bielefeld University, Center for Mathematical Economics (IMW)
- (where)
-
Bielefeld
- (when)
-
2022
- Handle
- URN
-
urn:nbn:de:0070-pub-29607594
- Last update
-
10.03.2025, 11:44 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Dianetti, Jodi
- Ferrari, Giorgio
- Fischer, Markus
- Nendel, Max
- Bielefeld University, Center for Mathematical Economics (IMW)
Time of origin
- 2022