Arbeitspapier

A unifying framework for submodular mean field games

We provide an abstract framework for submodular mean field games and identify verifiable sufficient conditions that allow to prove existence and approximation of strong mean field equilibria in models where data may not be continuous with respect to the measure parameter and common noise is allowed. The setting is general enough to encompass qualitatively different problems, such as mean field games for discrete time finite space Markov chains, singularly controlled and reflected diffusions, and mean field games of optimal timing. Our analysis hinges on Tarski's fixed point theorem, along with technical results on lattices of flows of probability and sub-probability measures.

Language
Englisch

Bibliographic citation
Series: Center for Mathematical Economics Working Papers ; No. 661

Classification
Wirtschaft
Subject
Mean field games
submodularity
complete lattice of measures
Tarski's fixedpoint theorem
Markov chain
singular stochastic control
reflected diffusion
optimal stopping

Event
Geistige Schöpfung
(who)
Dianetti, Jodi
Ferrari, Giorgio
Fischer, Markus
Nendel, Max
Event
Veröffentlichung
(who)
Bielefeld University, Center for Mathematical Economics (IMW)
(where)
Bielefeld
(when)
2022

Handle
URN
urn:nbn:de:0070-pub-29607594
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Dianetti, Jodi
  • Ferrari, Giorgio
  • Fischer, Markus
  • Nendel, Max
  • Bielefeld University, Center for Mathematical Economics (IMW)

Time of origin

  • 2022

Other Objects (12)