Artikel
Modeling the yield curve of BRICS countries: Parametric vs. machine learning techniques
We compare parametric and machine learning techniques (namely: Neural Networks) for in-sample modeling of the yield curve of the BRICS countries (Brazil, Russia, India, China, South Africa). To such aim, we applied the Dynamic De Rezende-Ferreira five-factor model with time-varying decay parameters and a Feed-Forward Neural Network to the bond market data of the BRICS countries. To enhance the flexibility of the parametric model, we also introduce a new procedure to estimate the time varying parameters that significantly improve its performance. Our contribution spans towards two directions. First, we offer a comprehensive investigation of the bond market in the BRICS countries examined both by time and maturity; working on five countries at once we also ensure that our results are not specific to a particular data-set; second we make recommendations concerning modelling and estimation choices of the yield curve. In this respect, although comparing highly flexible estimation methods, we highlight superior in-sample capabilities of the neural network in all the examined markets and then suggest that machine learning techniques can be a valid alternative to more traditional methods also in presence of marked turbulence.
- Sprache
-
Englisch
- Erschienen in
-
Journal: Risks ; ISSN: 2227-9091 ; Volume: 10 ; Year: 2022 ; Issue: 2 ; Pages: 1-18 ; Basel: MDPI
- Klassifikation
-
Wirtschaft
- Thema
-
Artificial Neural Network (ANN)
BRICS
De Rezende-Ferreira model
emerging markets
Feed-Forward Neural Network (FFNN)
term structure
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Castello, Oleksandr
Resta, Marina
- Ereignis
-
Veröffentlichung
- (wer)
-
MDPI
- (wo)
-
Basel
- (wann)
-
2022
- DOI
-
doi:10.3390/risks10020036
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Castello, Oleksandr
- Resta, Marina
- MDPI
Entstanden
- 2022