Locally conformally balanced metrics on almost abelian Lie algebras

Abstract: We study locally conformally balanced metrics on almost abelian Lie algebras, namely solvable Lie algebras admitting an abelian ideal of codimension one, providing characterizations in every dimension. Moreover, we classify six-dimensional almost abelian Lie algebras admitting locally conformally balanced metrics and study some compatibility results between different types of special Hermitian metrics on almost abelian Lie groups and their compact quotients. We end by classifying almost abelian Lie algebras admitting locally conformally hyperkähler structures.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Locally conformally balanced metrics on almost abelian Lie algebras ; volume:8 ; number:1 ; year:2021 ; pages:196-207 ; extent:12
Complex manifolds ; 8, Heft 1 (2021), 196-207 (gesamt 12)

Creator
Paradiso, Fabio

DOI
10.1515/coma-2020-0111
URN
urn:nbn:de:101:1-2022111213220239582853
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:26 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Paradiso, Fabio

Other Objects (12)