Artikel

On the convergence rate of the Halpern-iteration

In this work, we give a tight estimate of the rate of convergence for the Halpern-iteration for approximating a fixed point of a nonexpansive mapping in a Hilbert space. Specifically, using semidefinite programming and duality we prove that the norm of the residuals is upper bounded by the distance of the initial iterate to the closest fixed point divided by the number of iterations plus one.

Language
Englisch

Bibliographic citation
Journal: Optimization Letters ; ISSN: 1862-4480 ; Volume: 15 ; Year: 2020 ; Issue: 2 ; Pages: 405-418 ; Berlin, Heidelberg: Springer

Classification
Mathematik
Subject
Halpern-iteration
Fixed point methods
First order methods
Semidefinite programming
Performance estimation
Proximal point

Event
Geistige Schöpfung
(who)
Lieder, Felix
Event
Veröffentlichung
(who)
Springer
(where)
Berlin, Heidelberg
(when)
2020

DOI
doi:10.1007/s11590-020-01617-9
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Lieder, Felix
  • Springer

Time of origin

  • 2020

Other Objects (12)