Artikel
On the convergence rate of the Halpern-iteration
In this work, we give a tight estimate of the rate of convergence for the Halpern-iteration for approximating a fixed point of a nonexpansive mapping in a Hilbert space. Specifically, using semidefinite programming and duality we prove that the norm of the residuals is upper bounded by the distance of the initial iterate to the closest fixed point divided by the number of iterations plus one.
- Language
-
Englisch
- Bibliographic citation
-
Journal: Optimization Letters ; ISSN: 1862-4480 ; Volume: 15 ; Year: 2020 ; Issue: 2 ; Pages: 405-418 ; Berlin, Heidelberg: Springer
- Classification
-
Mathematik
- Subject
-
Halpern-iteration
Fixed point methods
First order methods
Semidefinite programming
Performance estimation
Proximal point
- Event
-
Geistige Schöpfung
- (who)
-
Lieder, Felix
- Event
-
Veröffentlichung
- (who)
-
Springer
- (where)
-
Berlin, Heidelberg
- (when)
-
2020
- DOI
-
doi:10.1007/s11590-020-01617-9
- Last update
-
10.03.2025, 11:45 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Artikel
Associated
- Lieder, Felix
- Springer
Time of origin
- 2020