Arbeitspapier
Estimating the quadratic covariation matrix from noisy observations: Local method of moments and efficiency
An efficient estimator is constructed for the quadratic covariation or integrated covolatility matrix of a multivariate continuous martingale based on noisy and non-synchronous observations under high-frequency asymptotics. Our approach relies on an asymptotically equivalent continuous-time observation model where a local generalised method of moments in the spectral domain turns out to be optimal. Asymptotic semiparametric efficiency is established in the Cramér-Rao sense. Main findings are that non-synchronicity of observation times has no impact on the asymptotics and that major efficiency gains are possible under correlation. Simulations illustrate the finite-sample behaviour.
- Language
-
Englisch
- Bibliographic citation
-
Series: SFB 649 Discussion Paper ; No. 2013-017
- Classification
-
Wirtschaft
Semiparametric and Nonparametric Methods: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Financial Econometrics
General Financial Markets: General (includes Measurement and Data)
- Subject
-
adaptive estimation
asymptotic equivalence
asynchronous observations
integrated covolatility matrix
quadratic covariation
semiparametric efficiency
microstructure noise
spectral estimation
- Event
-
Geistige Schöpfung
- (who)
-
Bibinger, Markus
Hautsch, Nikolaus
Malec, Peter
Reiss, Markus
- Event
-
Veröffentlichung
- (who)
-
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
- (where)
-
Berlin
- (when)
-
2013
- Handle
- Last update
-
10.03.2025, 11:44 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Bibinger, Markus
- Hautsch, Nikolaus
- Malec, Peter
- Reiss, Markus
- Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
Time of origin
- 2013