Arbeitspapier

Bootstrap inference for K-nearest neighbour matching estimators

Abadie and Imbens (2008, Econometrica) showed that classical bootstrap schemes fail to provide correct inference for K-nearest neighbour (KNN) matching estimators of average causal effects. This is an interesting result showing that bootstrap should not be applied without theoretical justification. In this paper, we present two resampling schemes, which we show provide valid inference for KNN matching estimators. We resample estimated individual causal effects (EICE), i.e. the difference in outcome between matched pairs, instead of the original data. Moreover, by taking differences in EICEs ordered with respect to the matching covariate, we obtain a bootstrap scheme valid also with heterogeneous causal effects where mild assumptions on the heterogeneity are imposed. We provide proofs of the validity of the proposed resampling based inferences. A simulation study illustrates finite sample properties.

Language
Englisch

Bibliographic citation
Series: Working Paper ; No. 2010:13

Classification
Wirtschaft
Subject
block bootstrap
subsampling
average causal/ treatment effect
Bootstrap-Verfahren
Bootstrap-Verfahren
Schätztheorie

Event
Geistige Schöpfung
(who)
de Luna, Xavier
Johansson, Per
Sjöstedt-de Luna, Sara
Event
Veröffentlichung
(who)
Institute for Labour Market Policy Evaluation (IFAU)
(where)
Uppsala
(when)
2010

Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • de Luna, Xavier
  • Johansson, Per
  • Sjöstedt-de Luna, Sara
  • Institute for Labour Market Policy Evaluation (IFAU)

Time of origin

  • 2010

Other Objects (12)