All-optical ultrafast ReLU function for energy-efficient nanophotonic deep learning

Abstract: In recent years, the computational demands of deep learning applications have necessitated the introduction of energy-efficient hardware accelerators. Optical neural networks are a promising option; however, thus far they have been largely limited by the lack of energy-efficient nonlinear optical functions. Here, we experimentally demonstrate an all-optical Rectified Linear Unit (ReLU), which is the most widely used nonlinear activation function for deep learning, using a periodically-poled thin-film lithium niobate nanophotonic waveguide and achieve ultra-low energies in the regime of femtojoules per activation with near-instantaneous operation. Our results provide a clear and practical path towards truly all-optical, energy-efficient nanophotonic deep learning.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
All-optical ultrafast ReLU function for energy-efficient nanophotonic deep learning ; volume:12 ; number:5 ; year:2022 ; pages:847-855 ; extent:9
Nanophotonics ; 12, Heft 5 (2022), 847-855 (gesamt 9)

Urheber
Li, Gordon H.Y.
Sekine, Ryoto
Nehra, Rajveer
Gray, Robert M.
Ledezma, Luis
Guo, Qiushi
Marandi, Alireza

DOI
10.1515/nanoph-2022-0137
URN
urn:nbn:de:101:1-2023030913393772437617
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 11:03 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Li, Gordon H.Y.
  • Sekine, Ryoto
  • Nehra, Rajveer
  • Gray, Robert M.
  • Ledezma, Luis
  • Guo, Qiushi
  • Marandi, Alireza

Ähnliche Objekte (12)