Arbeitspapier
Applications of Multilevel Structured Additive Regression Models to Insurance Data
Models with structured additive predictor provide a very broad and rich framework for complex regression modeling. They can deal simultaneously with nonlinear covariate effects and time trends, unit- or cluster specific heterogeneity, spatial heterogeneity and complex interactions between covariates of different type. In this paper, we discuss a hierarchical version of regression models with structured additive predictor and its applications to insurance data. That is, the regression coefficients of a particular nonlinear term may obey another regression model with structured additive predictor. The proposed model may be regarded as an extended version of a multilevel model with nonlinear covariate terms in every level of the hierarchy. We describe several highly efficient MCMC sampling schemes that allow to estimate complex models with several hierarchy levels and a large number of observations typically within a couple of minutes. We demonstrate the usefulness of the approach with applications to insurance data.
- Sprache
-
Englisch
- Erschienen in
-
Series: Working Papers in Economics and Statistics ; No. 2010-01
- Klassifikation
-
Wirtschaft
- Thema
-
Bayesian hierarchical models
multilevel models
P-splines
spatial heterogeneity
Bayes-Statistik
Theorie
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Lang, Stefan
Umlauf, Nikolaus
- Ereignis
-
Veröffentlichung
- (wer)
-
University of Innsbruck, Department of Public Finance
- (wo)
-
Innsbruck
- (wann)
-
2010
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:45 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Lang, Stefan
- Umlauf, Nikolaus
- University of Innsbruck, Department of Public Finance
Entstanden
- 2010