Arbeitspapier

Applications of Multilevel Structured Additive Regression Models to Insurance Data

Models with structured additive predictor provide a very broad and rich framework for complex regression modeling. They can deal simultaneously with nonlinear covariate effects and time trends, unit- or cluster specific heterogeneity, spatial heterogeneity and complex interactions between covariates of different type. In this paper, we discuss a hierarchical version of regression models with structured additive predictor and its applications to insurance data. That is, the regression coefficients of a particular nonlinear term may obey another regression model with structured additive predictor. The proposed model may be regarded as an extended version of a multilevel model with nonlinear covariate terms in every level of the hierarchy. We describe several highly efficient MCMC sampling schemes that allow to estimate complex models with several hierarchy levels and a large number of observations typically within a couple of minutes. We demonstrate the usefulness of the approach with applications to insurance data.

Sprache
Englisch

Erschienen in
Series: Working Papers in Economics and Statistics ; No. 2010-01

Klassifikation
Wirtschaft
Thema
Bayesian hierarchical models
multilevel models
P-splines
spatial heterogeneity
Bayes-Statistik
Theorie

Ereignis
Geistige Schöpfung
(wer)
Lang, Stefan
Umlauf, Nikolaus
Ereignis
Veröffentlichung
(wer)
University of Innsbruck, Department of Public Finance
(wo)
Innsbruck
(wann)
2010

Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Lang, Stefan
  • Umlauf, Nikolaus
  • University of Innsbruck, Department of Public Finance

Entstanden

  • 2010

Ähnliche Objekte (12)