Artikel
Γ‐robust linear complementarity problems with ellipsoidal uncertainty sets
We study uncertain linear complementarity problems (LCPs), that is, problems in which the LCP vector q or the LCP matrix M may contain uncertain parameters. To this end, we use the concept of Γ‐robust optimization applied to the gap function formulation of the LCP. Thus, this work builds upon Krebs and Schmidt (2020). There, we studied Γ‐robustified LCPs for ℓ1‐ and box‐uncertainty sets, whereas we now focus on ellipsoidal uncertainty sets. For uncertainty in q or M, we derive conditions for the tractability of the robust counterparts. For these counterparts, we also give conditions for the existence and uniqueness of their solutions. Finally, a case study for the uncertain traffic equilibrium problem is considered, which illustrates the effects of the values of Γ on the feasibility and quality of the respective robustified solutions.
- Sprache
-
Englisch
- Erschienen in
-
Journal: International Transactions in Operational Research ; ISSN: 1475-3995 ; Volume: 29 ; Year: 2021 ; Issue: 1 ; Pages: 417-441
- Klassifikation
-
Management
- Thema
-
robust optimization
linear complementarity problems
ellipsoidal uncertainty sets
traffic equilibrium problems
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Krebs, Vanessa
Müller, Michael
Schmidt, Martin
- Ereignis
-
Veröffentlichung
- (wer)
-
Wiley
- (wo)
-
Hoboken, NJ
- (wann)
-
2021
- DOI
-
doi:10.1111/itor.12988
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:41 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Krebs, Vanessa
- Müller, Michael
- Schmidt, Martin
- Wiley
Entstanden
- 2021
Ähnliche Objekte (12)
