Artikel

Γ‐robust linear complementarity problems with ellipsoidal uncertainty sets

We study uncertain linear complementarity problems (LCPs), that is, problems in which the LCP vector q or the LCP matrix M may contain uncertain parameters. To this end, we use the concept of Γ‐robust optimization applied to the gap function formulation of the LCP. Thus, this work builds upon Krebs and Schmidt (2020). There, we studied Γ‐robustified LCPs for ℓ1‐ and box‐uncertainty sets, whereas we now focus on ellipsoidal uncertainty sets. For uncertainty in q or M, we derive conditions for the tractability of the robust counterparts. For these counterparts, we also give conditions for the existence and uniqueness of their solutions. Finally, a case study for the uncertain traffic equilibrium problem is considered, which illustrates the effects of the values of Γ on the feasibility and quality of the respective robustified solutions.

Language
Englisch

Bibliographic citation
Journal: International Transactions in Operational Research ; ISSN: 1475-3995 ; Volume: 29 ; Year: 2021 ; Issue: 1 ; Pages: 417-441

Classification
Management
Subject
robust optimization
linear complementarity problems
ellipsoidal uncertainty sets
traffic equilibrium problems

Event
Geistige Schöpfung
(who)
Krebs, Vanessa
Müller, Michael
Schmidt, Martin
Event
Veröffentlichung
(who)
Wiley
(where)
Hoboken, NJ
(when)
2021

DOI
doi:10.1111/itor.12988
Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Krebs, Vanessa
  • Müller, Michael
  • Schmidt, Martin
  • Wiley

Time of origin

  • 2021

Other Objects (12)