Arbeitspapier

Beta-boosted ensemble for big credit scoring data

In this work we present a novel ensemble model for a credit scoring problem. The main idea of the approach is to incorporate separate beta binomial distributions for each of the classes to generate balanced datasets that are further used to construct base learners that constitute the final ensemble model. The sampling procedure is performed on two separate ranking lists, each for one class, where the ranking is based on prepotency of observing positive class. Two strategies are considered: one assumes mining easy examples and the second one forces good classification of hard cases. The proposed solutions are tested on two big datasets on credit scoring.

Sprache
Englisch

Erschienen in
Series: SFB 649 Discussion Paper ; No. 2016-052

Klassifikation
Wirtschaft
Forecasting Models; Simulation Methods
Thema
credit scoring
ensemble model
beta distribution
Beta boost
big data

Ereignis
Geistige Schöpfung
(wer)
Zieba, Maciej
Härdle, Wolfgang Karl
Ereignis
Veröffentlichung
(wer)
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
(wo)
Berlin
(wann)
2016

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Zieba, Maciej
  • Härdle, Wolfgang Karl
  • Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk

Entstanden

  • 2016

Ähnliche Objekte (12)