Arbeitspapier
To infinity and beyond: Efficient computation of ARCH(\infty) models
This paper provides an exact algorithm for efficient computation of the time series of conditional variances, and hence the likelihood function, of models that have an ARCH(É) representation. This class of models includes, e.g., the fractionally integrated generalized autoregressive conditional heteroskedasticity (FIGARCH) model. Our algorithm is a variation of the fast fractional difference algorithm of Jensen and Nielsen (2014). It takes advantage of the fast Fourier transform (FFT) to achieve an order of magnitude improvement in computational speed. The efficiency of the algorithm allows estimation (and simulation/bootstrapping) of ARCH(É) models, even with very large data sets and without the truncation of the filter commonly applied in the literature. We also show that the elimination of the truncation of the filter substantially reduces the bias of the quasi-maximum-likelihood estimators. Our results are illustrated in two empirical examples.
- Sprache
-
Englisch
- Erschienen in
-
Series: Queen’s Economics Department Working Paper ; No. 1425
- Klassifikation
-
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Financial Econometrics
Computational Techniques; Simulation Modeling
Econometric Software
- Thema
-
Circular convolution theorem
conditional heteroskedasticity
fast Fouriertransform
FIGARCH
truncation
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Nielsen, Morten Ørregaard
Noël, Antoine
- Ereignis
-
Veröffentlichung
- (wer)
-
Queen's University, Department of Economics
- (wo)
-
Kingston (Ontario)
- (wann)
-
2020
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:46 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Nielsen, Morten Ørregaard
- Noël, Antoine
- Queen's University, Department of Economics
Entstanden
- 2020