Arbeitspapier

Commodity connectedness

We use variance decompositions from high-dimensional vector autoregressions to characterize connectedness in 19 key commodity return volatilities, 2011-2016. We study both static (full-sample) and dynamic (rolling-sample) connectedness. We summarize and visualize the results using tools from network analysis. The results reveal clear clustering of commodities into groups that match traditional industry groupings, but with some notable differences. The energy sector is most important in terms of sending shocks to others, and energy, industrial metals, and precious metals are themselves tightly connected.

Sprache
Englisch

Erschienen in
Series: CFS Working Paper Series ; No. 575

Klassifikation
Wirtschaft
Thema
network centrality
network visualization
pairwise connectedness
total directional connectedness
total connectedness
vector autoregression
variance decomposition
LASSO

Ereignis
Geistige Schöpfung
(wer)
Diebold, Francis X.
Liu, Laura
Yilmaz, Kamil
Ereignis
Veröffentlichung
(wer)
Goethe University Frankfurt, Center for Financial Studies (CFS)
(wo)
Frankfurt a. M.
(wann)
2017

Handle
URN
urn:nbn:de:hebis:30:3-438617
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Diebold, Francis X.
  • Liu, Laura
  • Yilmaz, Kamil
  • Goethe University Frankfurt, Center for Financial Studies (CFS)

Entstanden

  • 2017

Ähnliche Objekte (12)