Arbeitspapier

Commodity connectedness

We use variance decompositions from high-dimensional vector autoregressions to characterize connectedness in 19 key commodity return volatilities, 2011-2016. We study both static (full-sample) and dynamic (rolling-sample) connectedness. We summarize and visualize the results using tools from network analysis. The results reveal clear clustering of commodities into groups that match traditional industry groupings, but with some notable differences. The energy sector is most important in terms of sending shocks to others, and energy, industrial metals, and precious metals are themselves tightly connected.

Language
Englisch

Bibliographic citation
Series: CFS Working Paper Series ; No. 575

Classification
Wirtschaft
Subject
network centrality
network visualization
pairwise connectedness
total directional connectedness
total connectedness
vector autoregression
variance decomposition
LASSO

Event
Geistige Schöpfung
(who)
Diebold, Francis X.
Liu, Laura
Yilmaz, Kamil
Event
Veröffentlichung
(who)
Goethe University Frankfurt, Center for Financial Studies (CFS)
(where)
Frankfurt a. M.
(when)
2017

Handle
URN
urn:nbn:de:hebis:30:3-438617
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Diebold, Francis X.
  • Liu, Laura
  • Yilmaz, Kamil
  • Goethe University Frankfurt, Center for Financial Studies (CFS)

Time of origin

  • 2017

Other Objects (12)