Artikel

Optimal dividend payment in De Finetti models: Survey and new results and strategies

We consider optimal dividend payment under the constraint that the with-dividend ruin probability does not exceed a given value ». This is done in most simple discrete De Finetti models. We characterize the value function V(s,») for initial surplus s of this problem, characterize the corresponding optimal dividend strategies, and present an algorithm for its computation. In an earlier solution to this problem, a Hamilton-Jacobi-Bellman equation for V(s,») can be found which leads to its representation as the limit of a monotone iteration scheme. However, this scheme is too complex for numerical computations. Here, we introduce the class of two-barrier dividend strategies with the following property: when dividends are paid above a barrier B, i.e., a dividend of size 1 is paid when reaching B+1 from B, then we repeat this dividend payment until reaching a limit L for some 0ÈLÈB. For these strategies we obtain explicit formulas for ruin probabilities and present values of dividend payments, as well as simplifications of the above iteration scheme. The results of numerical experiments show that the values V(s,») obtained in earlier work can be improved, they are suboptimal.

Sprache
Englisch

Erschienen in
Journal: Risks ; ISSN: 2227-9091 ; Volume: 8 ; Year: 2020 ; Issue: 3 ; Pages: 1-27 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
stochastic control
optimal dividend payment
ruin probability constraint
De Finetti model

Ereignis
Geistige Schöpfung
(wer)
Hipp, Christian
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2020

DOI
doi:10.3390/risks8030096
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Hipp, Christian
  • MDPI

Entstanden

  • 2020

Ähnliche Objekte (12)