Multiple rogue wave solutions of a generalized (3+1)-dimensional variable-coefficient Kadomtsev--Petviashvili equation

Abstract: Kadomtsev–Petviashvili equation is used for describing the long water wave and small amplitude surface wave with weak nonlinearity, weak dispersion, and weak perturbation in fluid mechanics. Based on the modified symbolic computation approach, the multiple rogue wave solutions of a generalized (3+1)-dimensional variable-coefficient Kadomtsev–Petviashvili equation are investigated. When the variable coefficient selects different functions, the dynamic properties of the derived solutions are displayed and analyzed by different three-dimensional graphics and contour graphics.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Multiple rogue wave solutions of a generalized (3+1)-dimensional variable-coefficient Kadomtsev--Petviashvili equation ; volume:20 ; number:1 ; year:2022 ; pages:452-457 ; extent:6
Open physics ; 20, Heft 1 (2022), 452-457 (gesamt 6)

Creator
Li, Kun-Qiong

DOI
10.1515/phys-2022-0043
URN
urn:nbn:de:101:1-2022071515595745591345
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:39 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Li, Kun-Qiong

Other Objects (12)