Extended Group Finite Element Method for a port‐Hamiltonian Formulation of the Non‐Isothermal Euler Equations

Abstract: This paper deals with a port‐Hamiltonian (pH) formulation of the non‐isothermal compressible Euler equations for a pipe flow. In the pH‐framework physical properties, like mass conservation and energy dissipation, are encoded in the system structure. Applying a structure‐preserving Galerkin approximation with mixed finite elements in space yields a nonlinear system with state‐dependent matrices. Assembly of these matrices in each time step is computationally expensive and makes model reduction inefficient, since the nonlinearities still depend on the full order state. We investigate the use of the extended group finite element method (EGFEM) to efficiently handle pH structure‐preservation. EGFEM separates the systems matrices into products of a state‐independent (precomputable) tensor and a state‐dependent vector for the nonlinearities, making the system easily accessible for complexity reduction.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Extended Group Finite Element Method for a port‐Hamiltonian Formulation of the Non‐Isothermal Euler Equations ; volume:21 ; number:1 ; year:2021 ; extent:2
Proceedings in applied mathematics and mechanics ; 21, Heft 1 (2021) (gesamt 2)

Creator
Hauschild, Sarah-Alexa
Marheineke, Nicole

DOI
10.1002/pamm.202100032
URN
urn:nbn:de:101:1-2021121514180913073778
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:29 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Hauschild, Sarah-Alexa
  • Marheineke, Nicole

Other Objects (12)