Extended Group Finite Element Method for a port‐Hamiltonian Formulation of the Non‐Isothermal Euler Equations
Abstract: This paper deals with a port‐Hamiltonian (pH) formulation of the non‐isothermal compressible Euler equations for a pipe flow. In the pH‐framework physical properties, like mass conservation and energy dissipation, are encoded in the system structure. Applying a structure‐preserving Galerkin approximation with mixed finite elements in space yields a nonlinear system with state‐dependent matrices. Assembly of these matrices in each time step is computationally expensive and makes model reduction inefficient, since the nonlinearities still depend on the full order state. We investigate the use of the extended group finite element method (EGFEM) to efficiently handle pH structure‐preservation. EGFEM separates the systems matrices into products of a state‐independent (precomputable) tensor and a state‐dependent vector for the nonlinearities, making the system easily accessible for complexity reduction.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Extended Group Finite Element Method for a port‐Hamiltonian Formulation of the Non‐Isothermal Euler Equations ; volume:21 ; number:1 ; year:2021 ; extent:2
Proceedings in applied mathematics and mechanics ; 21, Heft 1 (2021) (gesamt 2)
- Creator
-
Hauschild, Sarah-Alexa
Marheineke, Nicole
- DOI
-
10.1002/pamm.202100032
- URN
-
urn:nbn:de:101:1-2021121514180913073778
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
- 15.08.2025, 7:29 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Hauschild, Sarah-Alexa
- Marheineke, Nicole