Konferenzbeitrag

A literature review on machine learning in supply chain management

Purpose: In recent years, a number of practical logistic applications of machine learning (ML) have emerged, especially in Supply Chain Management (SCM). By linking applied ML methods to the SCM task model, the paper indicates the current applications in SCM and visualises potential research gaps. Methodology: Relevant papers with applications of ML in SCM are extracted based on a literature review of a period of 10 years (2009-2019). The used ML methods are linked to the SCM model, creating a reciprocal mapping. Findings: This paper results in an overview of ML applications and methods currently used in the area of SCM. Successfully applied ML methods in SCM in industry and examples from theoretical approaches are displayed for each task within the SCM task model. Originality: Linking the SC task model with current application areas of ML yields an overview of ML in SCM. This facilitates the identification of potential areas of application to companies, as well as potential future research areas to science.

Sprache
Englisch

Erschienen in
10419/209196

Klassifikation
Management
Thema
Supply chain management
Machine learning
Literature review
Predictive analytics

Ereignis
Geistige Schöpfung
(wer)
Wenzel, Hannah
Smit, Daniel
Sardesai, Saskia
Ereignis
Veröffentlichung
(wer)
epubli GmbH
(wo)
Berlin
(wann)
2019

DOI
doi:10.15480/882.2478
Handle
URN
urn:nbn:de:gbv:830-882.054345
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Konferenzbeitrag

Beteiligte

  • Wenzel, Hannah
  • Smit, Daniel
  • Sardesai, Saskia
  • epubli GmbH

Entstanden

  • 2019

Ähnliche Objekte (12)