Arbeitspapier

Methods for computing marginal data densities from the gibbs output

We introduce two new methods for estimating the Marginal Data Density (MDD) from the Gibbs output, which are based on exploiting the analytical tractability condition. Such a condition requires that some parameter blocks can be analytically integrated out from the conditional posterior densities. Our estimators are applicable to densely parameterized time series models such as VARs or DFMs. An empirical application to six-variate VAR models shows that the bias of a fully computational estimator is sufficiently large to distort the implied model rankings. One estimator is fast enough to make multiple computations of MDDs in densely parameterized models feasible.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 2011-31

Klassifikation
Wirtschaft
Bayesian Analysis: General
Statistical Simulation Methods: General
Thema
marginal likelihood
Gibbs sampler
time series econometrics
Bayesian econometrics
reciprocal importance sampling

Ereignis
Geistige Schöpfung
(wer)
Fuentes-Albero, Cristina
Melosi, Leonardo
Ereignis
Veröffentlichung
(wer)
Rutgers University, Department of Economics
(wo)
New Brunswick, NJ
(wann)
2011

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Fuentes-Albero, Cristina
  • Melosi, Leonardo
  • Rutgers University, Department of Economics

Entstanden

  • 2011

Ähnliche Objekte (12)