3D‐Printed Soft Lithography for Complex Compartmentalized Microfluidic Neural Devices
Abstract: Compartmentalized microfluidic platforms are an invaluable tool in neuroscience research. However, harnessing the full potential of this technology remains hindered by the lack of a simple fabrication approach for the creation of intricate device architectures with high‐aspect ratio features. Here, a hybrid additive manufacturing approach is presented for the fabrication of open‐well compartmentalized neural devices that provides larger freedom of device design, removes the need for manual postprocessing, and allows an increase in the biocompatibility of the system. Suitability of the method for multimaterial integration allows to tailor the device architecture for the long‐term maintenance of healthy human stem‐cell derived neurons and astrocytes, spanning at least 40 days. Leveraging fast‐prototyping capabilities at both micro and macroscale, a proof‐of‐principle human in vitro model of the nigrostriatal pathway is created. By presenting a route for novel materials and unique architectures in microfluidic systems, the method provides new possibilities in biological research beyond neuroscience applications.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
3D‐Printed Soft Lithography for Complex Compartmentalized Microfluidic Neural Devices ; volume:7 ; number:16 ; year:2020 ; extent:14
Advanced science ; 7, Heft 16 (2020) (gesamt 14)
- Urheber
-
Kajtez, Janko
Buchmann, Sebastian
Vasudevan, Shashank
Birtele, Marcella
Rocchetti, Stefano
Pless, Christian Jonathan
Heiskanen, Arto
Barker, Roger A.
Martínez‐Serrano, Alberto
Parmar, Malin
Lind, Johan Ulrik
Emnéus, Jenny
- DOI
-
10.1002/advs.202001150
- URN
-
urn:nbn:de:101:1-2022070510140304559034
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
- 09.01.2026, 11:38 MEZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Kajtez, Janko
- Buchmann, Sebastian
- Vasudevan, Shashank
- Birtele, Marcella
- Rocchetti, Stefano
- Pless, Christian Jonathan
- Heiskanen, Arto
- Barker, Roger A.
- Martínez‐Serrano, Alberto
- Parmar, Malin
- Lind, Johan Ulrik
- Emnéus, Jenny