Identities with generalized derivations in semiprime rings

Abstract: Let R be a semiprime ring. An additive mapping F: R → R is called a generalized derivation of R if there exists a derivation d: R → R such that F (xy) = F (x) y + xd (y) holds, for all x, y ∈ R. The objective of the present paper is to study the following situations: (1) [d (x), F (y)] = ±[x, y]; (2) [d (x), F (y)] = ±xοy; (3) [d (x), F (y)] = 0; (4) d (x)οF (y) = ±xοy; (5) d (x)οF (y) = ±[x, y]; (6) d (x)οF (y) = 0; (7) d (x) F (y)±xy ∈ Z (R), for all x, y in some appropriate subset of R.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Identities with generalized derivations in semiprime rings ; volume:46 ; number:3 ; year:2013 ; pages:453-460 ; extent:8
Demonstratio mathematica ; 46, Heft 3 (2013), 453-460 (gesamt 8)

Creator
Dhara, Basudeb
Ali, Shakir
Pattanayak, Atanu

DOI
10.1515/dema-2013-0471
URN
urn:nbn:de:101:1-2411181441440.888932051240
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:20 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Dhara, Basudeb
  • Ali, Shakir
  • Pattanayak, Atanu

Other Objects (12)