Arbeitspapier

Demand Estimation with Text and Image Data

We propose a demand estimation method that allows researchers to estimate substitution patterns from unstructured image and text data. We first employ a series of machine learning models to measure product similarity from products' images and textual descriptions. We then estimate a nested logit model with product-pair specific nesting parameters that depend on the image and text similarities between products. Our framework does not require collecting product attributes for each category and can capture product similarity along dimensions that are hard to account for with observed attributes. We apply our method to a dataset describing the behavior of Amazon shoppers across several categories and show that incorporating texts and images in demand estimation helps us recover a flexible cross-price elasticity matrix.

Sprache
Englisch

Erschienen in
Series: CESifo Working Paper ; No. 10695

Klassifikation
Wirtschaft
Econometric and Statistical Methods and Methodology: General
Econometric Modeling: General
Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
Thema
demand estimation
unstructured data
computer vision
text models

Ereignis
Geistige Schöpfung
(wer)
Compiani, Giovanni
Morozov, Ilya
Seiler, Stephan
Ereignis
Veröffentlichung
(wer)
Center for Economic Studies and ifo Institute (CESifo)
(wo)
Munich
(wann)
2023

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Compiani, Giovanni
  • Morozov, Ilya
  • Seiler, Stephan
  • Center for Economic Studies and ifo Institute (CESifo)

Entstanden

  • 2023

Ähnliche Objekte (12)