Tree Detection and Localization Approach for UAV-based Forest Inspection

Abstract: This paper addressed an UAV-based solution for forest inspection from the aspect of data processing. Insect infected trees can be identified from aerial imagery. The forest inspection data processing divided into two main phases, which are tree detection and tree localization. For the tree detection task, the Deep Learning-based approach has been used. In this study, a conventional and active learning method have been used for the training. In order to map the detected trees from the video frame to geographical locations, a custom geo-localization algorithm has been developed. The proposed system loads the inspection video as an input and calculates and outputs the detected trees’ GPS coordinates. In the calculation Digital Elevation Model and camera parameters are used in addition to drone geo-data to calculate the tree positions. https://www.bibliothek.tu-chemnitz.de/ojs/index.php/cs/article/view/557

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Tree Detection and Localization Approach for UAV-based Forest Inspection ; volume:9 ; number:3 ; day:13 ; month:12 ; year:2022
Embedded selforganising systems ; 9, Heft 3 (13.12.2022)

Urheber
Battseren, Batbayar
Mohamed , Salim Harras
Diego, Alejandro Orjuela Aguirre
Saleh, Shadi
Hardt, Wolfram

DOI
10.14464/ess.v9i3.557
URN
urn:nbn:de:101:1-2023032815390657624147
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:50 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Battseren, Batbayar
  • Mohamed , Salim Harras
  • Diego, Alejandro Orjuela Aguirre
  • Saleh, Shadi
  • Hardt, Wolfram

Ähnliche Objekte (12)