Preprint
A finite set of equilibria for the indeterminacy of linear rational expectations models
This paper demonstrates the existence of a finite set of equilibria in the case of the indeterminacy of linear rational expectations models. The number of equilibria corresponds to the number of ways to select n eigenvectors among a larger set of eigenvectors related to stable eigenvalues. A finite set of equilibria is a substitute to continuous (uncountable) sets of sunspots equilibria, when the number of independent eigenvectors for each stable eigenvalue is equal to one.
- Language
- 
                Englisch
 
- Classification
- 
                Wirtschaft
 Mathematical Methods; Programming Models; Mathematical and Simulation Modeling: General
 Optimization Techniques; Programming Models; Dynamic Analysis
 Existence and Stability Conditions of Equilibrium
 General Aggregative Models: Neoclassical
 Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook: General
 
- Subject
- 
                linear rational expectations models
 sunspots
 indeterminacy
 multiple equilibria
 matrix Riccati equation
 
- Event
- 
                Geistige Schöpfung
 
- (who)
- 
                Chatelain, Jean-Bernard
 Ralf, Kirsten
 
- Event
- 
                Veröffentlichung
 
- (who)
- 
                ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften, Leibniz-Informationszentrum Wirtschaft
 
- (where)
- 
                Kiel und Hamburg
 
- (when)
- 
                2014-07-25
 
- Handle
- Last update
- 
                
                    
                        10.03.2025, 11:43 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Preprint
Associated
- Chatelain, Jean-Bernard
- Ralf, Kirsten
- ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften, Leibniz-Informationszentrum Wirtschaft
Time of origin
- 2014-07-25
 
            