Arbeitspapier
Bending the learning curve
This paper aims at improving the application of the learning curve, a popular tool used for forecasting future costs of renewable technologies in integrated assessment models (IAMs). First, we formally discuss under what assumptions the traditional (OLS) estimates of the learning curve can deliver meaningful predictions in IAMs. We argue that the most problematic of them is the absence of any effect of technology cost on its demand (reverse causality). Next, we show that this assumption can be relaxed by modifying the traditional econometric method used to estimate the learning curve. The new estimation approach presented in this paper is robust to the reverse causality problem but preserves the reduced form character of the learning curve. Finally, we provide new estimates of learning curves for wind turbines and PV technologies which are tailored for use in IAMs. Our results suggest that the learning rate should be revised downward for wind power, but possibly upward for solar PV.
- Sprache
-
Englisch
- Erschienen in
-
Series: Nota di Lavoro ; No. 65.2015
- Klassifikation
-
Wirtschaft
Alternative Energy Sources
Environmental Economics: Technological Innovation
Large Data Sets: Modeling and Analysis
Single Equation Models: Single Variables: Instrumental Variables (IV) Estimation
- Thema
-
Learning Curve
Renewable Technologies
Integrated Assessment Models
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Witajewski-Baltvilks, Jan
Verdolini, Elena
Tavoni, Massimo
- Ereignis
-
Veröffentlichung
- (wer)
-
Fondazione Eni Enrico Mattei (FEEM)
- (wo)
-
Milano
- (wann)
-
2015
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:41 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Witajewski-Baltvilks, Jan
- Verdolini, Elena
- Tavoni, Massimo
- Fondazione Eni Enrico Mattei (FEEM)
Entstanden
- 2015