Artikel

Optimal surplus-dependent reinsurance under regime-switching in a Brownian risk model

In this paper, we consider a company that wishes to determine the optimal reinsurance strategy minimising the total expected discounted amount of capital injections needed to prevent the ruin. The company's surplus process is assumed to follow a Brownian motion with drift, and the reinsurance price is modelled by a continuous-time Markov chain with two states. The presence of regime-switching substantially complicates the optimal reinsurance problem, as the surplus-independent strategies turn out to be suboptimal. We develop a recursive approach that allows to represent a solution to the corresponding Hamilton-Jacobi-Bellman (HJB) equation and the corresponding reinsurance strategy as the unique limits of the sequence of solutions to ordinary differential equations and their first- and second-order derivatives. Via Ito's formula, we prove the constructed function to be the value function. Two examples illustrate the recursive procedure along with a numerical approach yielding the direct solution to the HJB equation.

Sprache
Englisch

Erschienen in
Journal: Risks ; ISSN: 2227-9091 ; Volume: 9 ; Year: 2021 ; Issue: 4 ; Pages: 1-25 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
boundary value problem
Brownian motion
HJB equation
Markov chain
optimal control
ordinary differential equations
regime-switching
reinsurance

Ereignis
Geistige Schöpfung
(wer)
Eisenberg, Julia
Fabrykowski, Lukas
Schmeck, Maren Diane
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2021

DOI
doi:10.3390/risks9040073
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Eisenberg, Julia
  • Fabrykowski, Lukas
  • Schmeck, Maren Diane
  • MDPI

Entstanden

  • 2021

Ähnliche Objekte (12)