The strong maximum principle for Schrödinger operators on fractals

Abstract: We prove a strong maximum principle for Schrödinger operators defined on a class of postcritically finite fractal sets and their blowups without boundary. Our primary interest is in weaker regularity conditions than have previously appeared in the literature; in particular we permit both the fractal Laplacian and the potential to be Radon measures on the fractal. As a consequence of our results, we establish a Harnack inequality for solutions of these operators.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
The strong maximum principle for Schrödinger operators on fractals ; volume:52 ; number:1 ; year:2019 ; pages:404-409 ; extent:6
Demonstratio mathematica ; 52, Heft 1 (2019), 404-409 (gesamt 6)

Urheber
Ionescu, Marius V.
Okoudjou, Kasso A.
Rogers, Luke G.

DOI
10.1515/dema-2019-0034
URN
urn:nbn:de:101:1-2411181502146.670091703539
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:29 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Ionescu, Marius V.
  • Okoudjou, Kasso A.
  • Rogers, Luke G.

Ähnliche Objekte (12)