Artikel
Neural network approximation for superhedging prices
This article examines neural network‐based approximations for the superhedging price process of a contingent claim in a discrete time market model. First we prove that the α‐quantile hedging price converges to the superhedging price at time 0 for α tending to 1, and show that the α‐quantile hedging price can be approximated by a neural network‐based price. This provides a neural network‐based approximation for the superhedging price at time 0 and also the superhedging strategy up to maturity. To obtain the superhedging price process for t>0$t>0$, by using the Doob decomposition, it is sufficient to determine the process of consumption. We show that it can be approximated by the essential supremum over a set of neural networks. Finally, we present numerical results.
- Language
-
Englisch
- Bibliographic citation
-
Journal: Mathematical Finance ; ISSN: 1467-9965 ; Volume: 33 ; Year: 2022 ; Issue: 1 ; Pages: 146-184 ; Hoboken, NJ: Wiley
- Subject
-
deep learning
quantile hedging
superhedging
- Event
-
Geistige Schöpfung
- (who)
-
Biagini, Francesca
Gonon, Lukas
Reitsam, Thomas
- Event
-
Veröffentlichung
- (who)
-
Wiley
- (where)
-
Hoboken, NJ
- (when)
-
2022
- DOI
-
doi:10.1111/mafi.12363
- Last update
-
10.03.2025, 11:43 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Artikel
Associated
- Biagini, Francesca
- Gonon, Lukas
- Reitsam, Thomas
- Wiley
Time of origin
- 2022