Artikel

Neural network approximation for superhedging prices

This article examines neural network‐based approximations for the superhedging price process of a contingent claim in a discrete time market model. First we prove that the α‐quantile hedging price converges to the superhedging price at time 0 for α tending to 1, and show that the α‐quantile hedging price can be approximated by a neural network‐based price. This provides a neural network‐based approximation for the superhedging price at time 0 and also the superhedging strategy up to maturity. To obtain the superhedging price process for t>0$t>0$, by using the Doob decomposition, it is sufficient to determine the process of consumption. We show that it can be approximated by the essential supremum over a set of neural networks. Finally, we present numerical results.

Language
Englisch

Bibliographic citation
Journal: Mathematical Finance ; ISSN: 1467-9965 ; Volume: 33 ; Year: 2022 ; Issue: 1 ; Pages: 146-184 ; Hoboken, NJ: Wiley

Subject
deep learning
quantile hedging
superhedging

Event
Geistige Schöpfung
(who)
Biagini, Francesca
Gonon, Lukas
Reitsam, Thomas
Event
Veröffentlichung
(who)
Wiley
(where)
Hoboken, NJ
(when)
2022

DOI
doi:10.1111/mafi.12363
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Biagini, Francesca
  • Gonon, Lukas
  • Reitsam, Thomas
  • Wiley

Time of origin

  • 2022

Other Objects (12)