Artikel

Neural network approximation for superhedging prices

This article examines neural network‐based approximations for the superhedging price process of a contingent claim in a discrete time market model. First we prove that the α‐quantile hedging price converges to the superhedging price at time 0 for α tending to 1, and show that the α‐quantile hedging price can be approximated by a neural network‐based price. This provides a neural network‐based approximation for the superhedging price at time 0 and also the superhedging strategy up to maturity. To obtain the superhedging price process for t>0$t>0$, by using the Doob decomposition, it is sufficient to determine the process of consumption. We show that it can be approximated by the essential supremum over a set of neural networks. Finally, we present numerical results.

Sprache
Englisch

Erschienen in
Journal: Mathematical Finance ; ISSN: 1467-9965 ; Volume: 33 ; Year: 2022 ; Issue: 1 ; Pages: 146-184 ; Hoboken, NJ: Wiley

Thema
deep learning
quantile hedging
superhedging

Ereignis
Geistige Schöpfung
(wer)
Biagini, Francesca
Gonon, Lukas
Reitsam, Thomas
Ereignis
Veröffentlichung
(wer)
Wiley
(wo)
Hoboken, NJ
(wann)
2022

DOI
doi:10.1111/mafi.12363
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Biagini, Francesca
  • Gonon, Lukas
  • Reitsam, Thomas
  • Wiley

Entstanden

  • 2022

Ähnliche Objekte (12)