Artikel
Neural network approximation for superhedging prices
This article examines neural network‐based approximations for the superhedging price process of a contingent claim in a discrete time market model. First we prove that the α‐quantile hedging price converges to the superhedging price at time 0 for α tending to 1, and show that the α‐quantile hedging price can be approximated by a neural network‐based price. This provides a neural network‐based approximation for the superhedging price at time 0 and also the superhedging strategy up to maturity. To obtain the superhedging price process for t>0$t>0$, by using the Doob decomposition, it is sufficient to determine the process of consumption. We show that it can be approximated by the essential supremum over a set of neural networks. Finally, we present numerical results.
- Sprache
-
Englisch
- Erschienen in
-
Journal: Mathematical Finance ; ISSN: 1467-9965 ; Volume: 33 ; Year: 2022 ; Issue: 1 ; Pages: 146-184 ; Hoboken, NJ: Wiley
- Thema
-
deep learning
quantile hedging
superhedging
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Biagini, Francesca
Gonon, Lukas
Reitsam, Thomas
- Ereignis
-
Veröffentlichung
- (wer)
-
Wiley
- (wo)
-
Hoboken, NJ
- (wann)
-
2022
- DOI
-
doi:10.1111/mafi.12363
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Biagini, Francesca
- Gonon, Lukas
- Reitsam, Thomas
- Wiley
Entstanden
- 2022