Arbeitspapier

Bayesian inference for duration data with unobserved and unknown heterogeneity : Monte Carlo evidence and an application

This paper describes a semiparametric Bayesian method for analyzing duration data. The proposed estimator specifies a complete functional form for duration spells, but allows flexibility by introducing an individual heterogeneity term, which follows a Dirichlet mixture distribution. I show how to obtain predictive distributions for duration data that correctly account for the uncertainty present in the model. I also directly compare the performance of the proposed estimator with Heckman and Singer's (1984) Non Parametric Maximum Likelihood Estimator (NPMLE). The methodology is applied to the analysis of youth unemployment spells. Compared to the NPMLE, the proposed estimator reflects more accurately the uncertainty surrounding the heterogeneity distribution.

Language
Englisch

Bibliographic citation
Series: IZA Discussion Papers ; No. 996

Classification
Wirtschaft
Duration Analysis; Optimal Timing Strategies
Bayesian Analysis: General
Subject
duration data
Dirichlet process
Bayesian inference
Markov chain Monte Carlo simulation
Statistische Bestandsanalyse
Nichtparametrisches Verfahren
Bayes-Statistik
Maximum-Likelihood-Methode
Schätzung
Jugendarbeitslosigkeit
Theorie
Vereinigte Staaten

Event
Geistige Schöpfung
(who)
Paserman, Marco Daniele
Event
Veröffentlichung
(who)
Institute for the Study of Labor (IZA)
(where)
Bonn
(when)
2004

Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Paserman, Marco Daniele
  • Institute for the Study of Labor (IZA)

Time of origin

  • 2004

Other Objects (12)