Hochschulschrift

Maximal Lp-Lq regularity for discrete elliptic differential operators

Maximal regularity estimates play an important role in the analysis of parabolic problems. In particular, maximal regularity estimates are very useful for nonlinear parabolic problems. Therefore, in this book, maximal regularity estimates for approximations of solutions of parabolic differential equations by finite elements or finite differences are investigated. In this context, one has to show that maximal regularity estimates are independent of the mesh. More precisely, uniform estimates for a family of finite element (finite difference) operators are shown. These estimates are used to prove uniqueness and existence of a local, strong solution for approximations of semilinear problems. Moreover, uniform maximal regularity estimates lead to a new approach for proving error estimates. Finally, error estimates in the linear and semilinear case are proved.

Location
Deutsche Nationalbibliothek Frankfurt am Main
ISBN
9783936846515
3936846510
Dimensions
24 cm
Extent
XI, 127 S.
Language
Englisch
Notes
graph. Darst.
Zugl.: Darmstadt, Techn. Univ., Diss., 2003

Classification
Mathematik
Keyword
Parabolische Differentialgleichung
Finite-Elemente-Methode
Finite-Differenzen-Methode
Elliptischer Differentialoperator
Regularität

Event
Veröffentlichung
(where)
Berlin
(who)
wvb, Wiss. Verl. Berlin
(when)
2003
Creator
Geißert, Matthias

Table of contents
Rights
Bei diesem Objekt liegt nur das Inhaltsverzeichnis digital vor. Der Zugriff darauf ist unbeschränkt möglich.
Last update
11.06.2025, 2:24 PM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Object type

  • Hochschulschrift

Associated

  • Geißert, Matthias
  • wvb, Wiss. Verl. Berlin

Time of origin

  • 2003

Other Objects (12)