Arbeitspapier

Placement Optimization in Refugee Resettlement

Every year tens of thousands of refugees are resettled to dozens of host countries. While there is growing evidence that the initial placement of refugee families profoundly affects their lifetime outcomes, there have been few attempts to optimize resettlement decisions. We integrate machine learning and integer optimization into an innovative software tool, Annie Moore, that assists a US resettlement agency with matching refugees to their initial placements. Our software suggests optimal placements while giving substantial autonomy to the resettlement staff to fine-tune recommended matches, thereby streamlining their resettlement operations. Initial backtesting indicates that Annie can improve short-run employment outcomes by 22%–38%. We conclude by discussing several directions for future work.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 2018:23

Klassifikation
Wirtschaft
Operations Research; Statistical Decision Theory
Large Data Sets: Modeling and Analysis
Optimization Techniques; Programming Models; Dynamic Analysis
Bargaining Theory; Matching Theory
International Migration
Geographic Labor Mobility; Immigrant Workers
Thema
Refugee Resettlement
Matching
Integer Optimization
Machine Learning
Humanitarian Operations

Ereignis
Geistige Schöpfung
(wer)
Trapp, Andrew C.
Teytelboym, Alexander
Martinello, Alessandro
Andersson, Tommy
Ahani, Narges
Ereignis
Veröffentlichung
(wer)
Lund University, School of Economics and Management, Department of Economics
(wo)
Lund
(wann)
2020

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Trapp, Andrew C.
  • Teytelboym, Alexander
  • Martinello, Alessandro
  • Andersson, Tommy
  • Ahani, Narges
  • Lund University, School of Economics and Management, Department of Economics

Entstanden

  • 2020

Ähnliche Objekte (12)