Artikel

Entropy maximization as a basis for information recovery in dynamic economic behavioral systems

As a basis for information recovery in open dynamic microeconomic systems, we emphasize the connection between adaptive intelligent behavior, causal entropy maximization and self-organized equilibrium seeking behavior. This entropy-based causal adaptive behavior framework permits the use of information-theoretic methods as a solution basis for the resulting pure and stochastic inverse economic-econometric problems. We cast the information recovery problem in the form of a binary network and suggest information-theoretic methods to recover estimates of the unknown binary behavioral parameters without explicitly sampling the configuration-arrangement of the sample space.

Language
Englisch

Bibliographic citation
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 3 ; Year: 2015 ; Issue: 1 ; Pages: 91-100 ; Basel: MDPI

Classification
Wirtschaft
Econometric and Statistical Methods and Methodology: General
Single Equation Models; Single Variables: Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
Econometric and Statistical Methods: Special Topics: General
Subject
information-theoretic methods
adaptive behavior
causal entropy maximization
pure and stochastic inverse problems
binary network
dynamic economic systems

Event
Geistige Schöpfung
(who)
Judge, George
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2015

DOI
doi:10.3390/econometrics3010091
Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Judge, George
  • MDPI

Time of origin

  • 2015

Other Objects (12)