Artikel

Interpretation of point forecasts with unknown directive

Point forecasts can be interpreted as functionals (i.e., point summaries) of predictive distributions. We extend methodology for the identification of the functional based on time series of point forecasts and associated realizations. Focusing on state‐dependent quantiles and expectiles, we provide a generalized method of moments estimator for the functional, along with tests of optimality under general joint hypotheses of functional relationships and information bases. Our tests are more flexible, and in simulations better calibrated and more powerful than existing solutions. In empirical examples, economic growth forecasts and model output for precipitation are indicative of overstatement in anticipation of extreme events.

Language
Englisch

Bibliographic citation
Journal: Journal of Applied Econometrics ; ISSN: 1099-1255 ; Volume: 36 ; Year: 2021 ; Issue: 6 ; Pages: 728-743

Classification
Wirtschaft
Subject
expectile
identifying moment conditions
information set
loss function
optimality of point forecasts
quantile

Event
Geistige Schöpfung
(who)
Schmidt, Patrick
Katzfuss, Matthias
Gneiting, Tilmann
Event
Veröffentlichung
(who)
Wiley
(where)
Hoboken, NJ
(when)
2021

DOI
doi:10.1002/jae.2833
Handle
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Schmidt, Patrick
  • Katzfuss, Matthias
  • Gneiting, Tilmann
  • Wiley

Time of origin

  • 2021

Other Objects (12)