Using machine learning to construct TOMCAT model and occultation measurement-based stratospheric methane (TCOM-CH4) and nitrous oxide (TCOM-N2O) profile data sets
Abstract 2 O) profile measurements for earlier years, we derive XGBoost-derived correction terms to construct TCOM-N2O profiles using only ACE-FTS profiles from the 2004–2018 time period, with profiles from 2019–2021 used for the independent evaluation. Overall, both TCOM-CH4 and TCOM-N2O profiles exhibit excellent agreement with the available satellite-measurement-based data sets. We find that compared to evaluation profiles, biases in TCOM-CH4 and TCOM-N2O are generally less than 10 % and 50 %, respectively, throughout the stratosphere. The daily zonal mean profile data sets, covering altitude (15–60 km) and pressure (300–0.1 hPa) levels, are publicly available via the following links: 10.5281/zenodo.7293740 for TCOM-CH4 and 10.5281/zenodo.7386001 for TCOM-N2O.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Using machine learning to construct TOMCAT model and occultation measurement-based stratospheric methane (TCOM-CH4) and nitrous oxide (TCOM-N2O) profile data sets ; volume:15 ; number:11 ; year:2023 ; pages:5105-5120 ; extent:16
Earth system science data ; 15, Heft 11 (2023), 5105-5120 (gesamt 16)
- Urheber
- DOI
-
10.5194/essd-15-5105-2023
- URN
-
urn:nbn:de:101:1-2023113003283034667605
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
15.08.2025, 07:20 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.