<i>k</i>CV-B: BOOTSTRAP WITH CROSS-VALIDATION FOR DEEP LEARNING MODEL DEVELOPMENT, ASSESSMENT AND SELECTION

Abstract. This study investigates the inability of two popular data splitting techniques: train/test split and k-fold cross-validation that are to create training and validation data sets, and to achieve sufficient generality for supervised deep learning (DL) methods. This failure is mainly caused by their limited ability of new data creation. In response, the bootstrap is a computer based statistical resampling method that has been used efficiently for estimating the distribution of a sample estimator and to assess a model without having knowledge about the population. This paper couples cross-validation and bootstrap to have their respective advantages in view of data generation strategy and to achieve better generalization of a DL model. This paper contributes by: (i) developing an algorithm for better selection of training and validation data sets, (ii) exploring the potential of bootstrap for drawing statistical inference on the necessary performance metrics (e.g., mean square error), and (iii) introducing a method that can assess and improve the efficiency of a DL model. The proposed method is applied for semantic segmentation and is demonstrated via a DL based classification algorithm, PointNet, through aerial laser scanning point cloud data.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
kCV-B: BOOTSTRAP WITH CROSS-VALIDATION FOR DEEP LEARNING MODEL DEVELOPMENT, ASSESSMENT AND SELECTION ; volume:XLVIII-4/W3-2022 ; year:2022 ; pages:111-118 ; extent:8
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences ; XLVIII-4/W3-2022 (2022), 111-118 (gesamt 8)

Urheber
Nurunnabi, A.
Teferle, Felicia Norma
Laefer, D. F.
Remondino, Fabio
Karas, I. R.
Li, J.

DOI
10.5194/isprs-archives-XLVIII-4-W3-2022-111-2022
URN
urn:nbn:de:101:1-2022120804372021487518
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:27 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Ähnliche Objekte (12)