ROBUST TECHNIQUES FOR BUILDING FOOTPRINT EXTRACTION IN AERIAL LASER SCANNING 3D POINT CLOUDS

Abstract. The building footprint is crucial for a volumetric 3D representation of a building that is applied in urban planning, 3D city modeling, cadastral and topographic map generation. Aerial laser scanning (ALS) has been recognized as the most suitable means of large-scale 3D point cloud data (PCD) acquisition. PCD can produce geometric detail of a scanned surface. However, it is almost impossible to get point clouds without noise and outliers. Besides, data incompleteness and occlusions are two common phenomena for PCD. Most of the existing methods for building footprint extraction employ classification, segmentation, voting techniques (e.g., Hough-Transform or RANSAC), or Principal Component Analysis (PCA) based methods. It is known that classical PCA is highly sensitive to outliers, even RANSAC which is known as a robust technique for shape detection is not free from outlier effects. This paper presents a novel algorithm that employs MCMD (maximum consistency within minimum distance), MSAC (a robust variant of RANSAC) and a robust regression to extract reliable building footprints in the presence of outliers, missing points and irregular data distributions. The algorithm is successfully demonstrated through two sets of ALS PCD.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
ROBUST TECHNIQUES FOR BUILDING FOOTPRINT EXTRACTION IN AERIAL LASER SCANNING 3D POINT CLOUDS ; volume:XLVIII-3/W2-2022 ; year:2022 ; pages:43-50 ; extent:8
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences ; XLVIII-3/W2-2022 (2022), 43-50 (gesamt 8)

Urheber
Nurunnabi, A.
Teferle, Felicia Norma
Balado, J.
Chen, M.
Poux, F.
Sun, C.

DOI
10.5194/isprs-archives-XLVIII-3-W2-2022-43-2022
URN
urn:nbn:de:101:1-2022110304331413435821
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:36 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Ähnliche Objekte (12)