Konferenzbeitrag
Nutzung künstlicher Neuronaler Netze zur Detektion von Stadtgrün
Bäume sind eine wichtige Ressource für die Stadt- und Raumplanung. Um diese – beispielsweise zu Klimaschutzmaßnahmen – optimal nutzen zu können, werden entsprechende Informationen darüber benötigt. Die Erhebung von Baumstandorten, -höhen, Kronendurchmessern etc. vor Ort ist aufwändig und damit zeit- und kostenintensiv. Gleichzeitig steht eine große Menge an Fernerkundungsdaten, wie beispielsweise digitale Orthophotos oder Geländemodelle, in denen Bäume erfasst sind, zur Verfügung. Die Entwicklung geeigneter Methoden, um diese Daten (automatisiert) auszuwerten, ist von entscheidender Bedeutung, wobei im Zusammenhang mit der Verarbeitung und Analyse großer Datenmengen derzeit verschiedene Methoden des maschinellen Lernens, insbesondere künstliche Neuronale Netze (kNN), Gegenstand intensiver Forschung sind.
- Verwandtes Objekt und Literatur
-
978-3-944101-77-4
urn:nbn:de:bsz:14-qucosa2-706126
qucosa:70612
- Thema
-
Geowissenschaften
Stadtgrün
künstliche Neuronale Netze
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Haas, Amelie
- Ereignis
-
Herstellung
- (wer)
-
Leibniz-Institut für ökologische Raumentwicklung e.V. (IÖR)
- Ereignis
-
Veröffentlichung
- (wer)
- URN
-
urn:nbn:de:bsz:14-qucosa2-722907
- Letzte Aktualisierung
-
14.03.2025, 08:15 MEZ
Datenpartner
Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Konferenzbeitrag
Beteiligte
- Haas, Amelie
- Leibniz-Institut für ökologische Raumentwicklung e.V. (IÖR)
- Rhombos-Verlag